
systèmes érythrocytaires systèmes érythrocytaires cliniquement importants

30 systèmes érythrocytaires (août 2008)

numéro	nom	Symbole ISBT	Importance en transfusion
001	ABO	ABO	oui
002	MNSs	MNS	oui (S et s)
003	P	P	non
004	Rhésus	RH	oui
005	Lutheran	LU	oui
006	Kell	KEL	oui
007	Lewis	LE	non
800	Duffy	FY	oui
009	Kidd	JK	oui

010	Diego	DI	oui
011	Cartwright	YT	(oui)
012	Xg	XG	non
013	Scianna	SC	non
014	Dombrock	DO	oui
015	Colton	CO	oui
016	Landst.Wiener	LW	non
017	Chido/Rodgers	CH/RG	non
018	Н	H	oui
019	Kx	XK	oui
020	Gerbich	GE	non

021	Cromer	CROM	non
022	Knops	KN	non
023	Indian	IN	?
024	Ok	OK	?
025	Raph	RAPH	?
026	John Milton Hagen	JMH	oui
027	li		(oui si titre élevé)
028	Globoside	GLOB	?
029	Gill	GIL	?
030	RHAG	RHAG	?

Paire de chromosomes		Système	es érythro	cytaires	
1	RH	FY	SC	CROM	KN
2	GE				
3	GLOB				
4	MNS				
6	I	CH/RG	RHAG		
7	KEL	YT	CO		
9	ABO	GIL			
11	IN	RAPH			

12	DO				
15	JMH				
17	DI				
18	JK				
19	LU	LE	LW	Н	OK
22	P				
X	XG	XK			

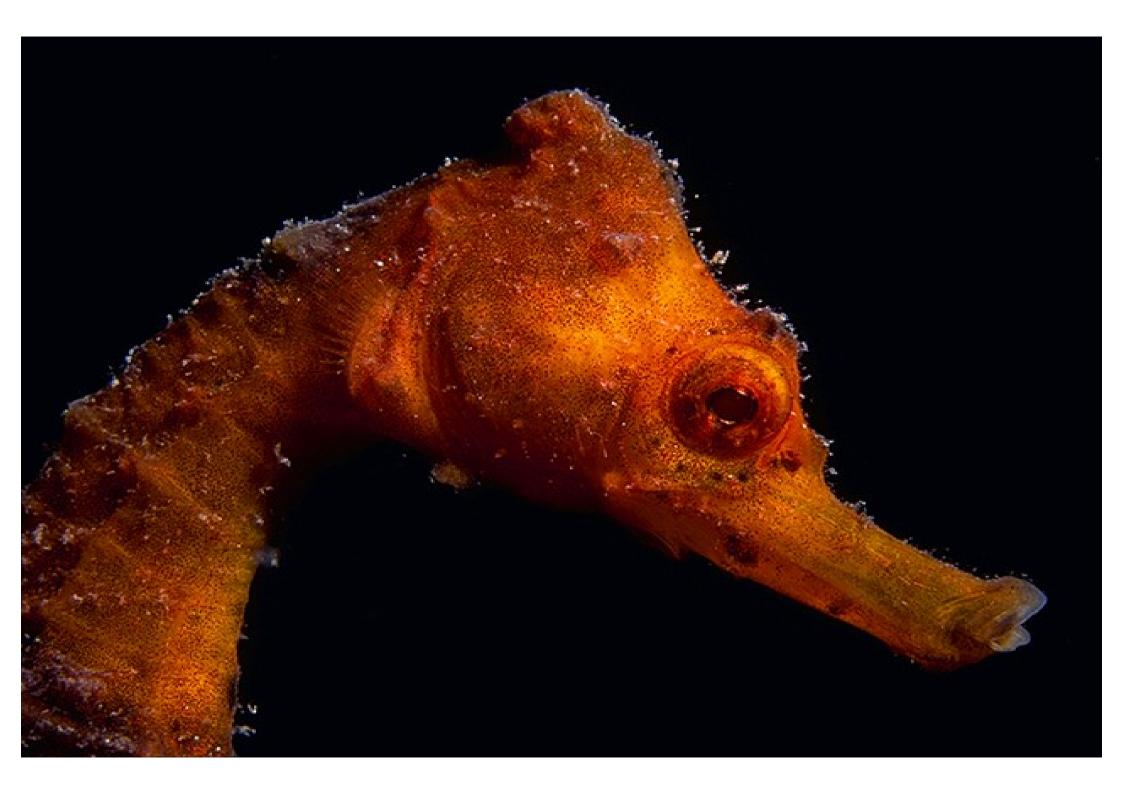
Système: Lutheran

LU (sigle)

005 (n° du système)

- Antigène: est identifié par un ° à 6 chiffres
 - Les 3 premiers représent le système
 - Les 3 derniers, la spécificité
 - Ex: ag Lua 005001 ou LU1

Phénotypes:


Symbole du système suivi par la liste des ag séparés par une virgule. Si l'ag est testé mais absent, on met un – devant

Ex: Lu(a-b+) donne LU: -1,2

Ex: K-k+, Kp(a+b-) donne KEL: -1,2,3,-4

Genes:

symbole du système en italique et n° de l'ag Ex: le gène Kpª donne *KEL3*

SYSTEME KELL

métalloprotéase à Zn métalloprotéase à Zn

chromosomes n° 7

1949: K (KEL1) et k (KEL2)

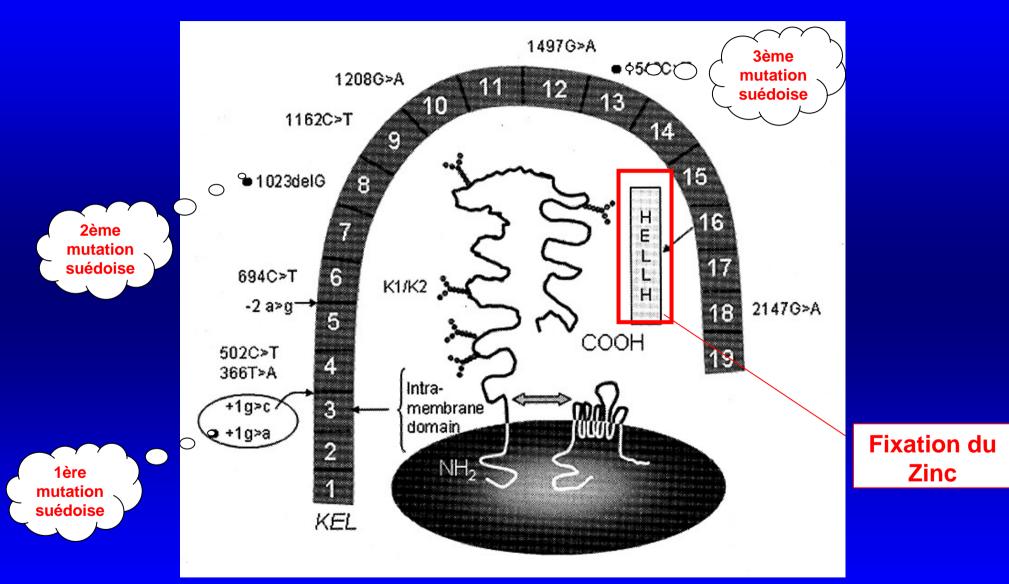
1949-1963: Kp^a, Kp^b, Js^a, Js^b

1995: biologie moléculaire des antigènes K et k

34 antigènes (2008)

SYSTEME KELL

ISBT 006, KEL


- les antigènes KEL sont très immunogènes après ABO et RH
- détruits par le ZZAP (DTT + enzymes), ce qui veut dire que les antigènes KEL possèdent des ponts disulfures; en effet, un grand nombre dans la région extracellulaire

Phénotypes

anti-K	anti-k	phénotype	génotype	fréquence
+	0	K+k-	KK	0.2 %
+	+	K+k+	Kk	8.8 %
0	+	K-k+	kk	91 %

19 exons du gène KEL et les points de mutation du gène KEL*0

Transfusion, vol 45, April 2005 M. Olsson and coll. Lund, Sweden

SYSTEME KELL

ISBT 006, KEL

Les phénotypes les plus courants:

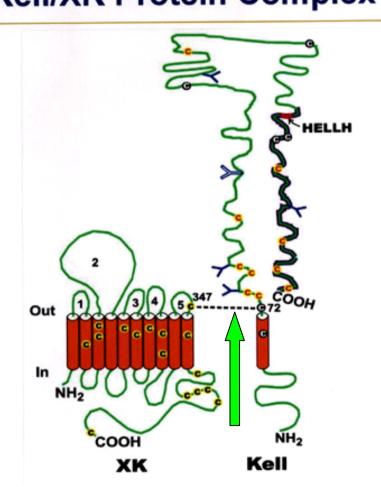
K-k+ KEL: -1,2 91 %

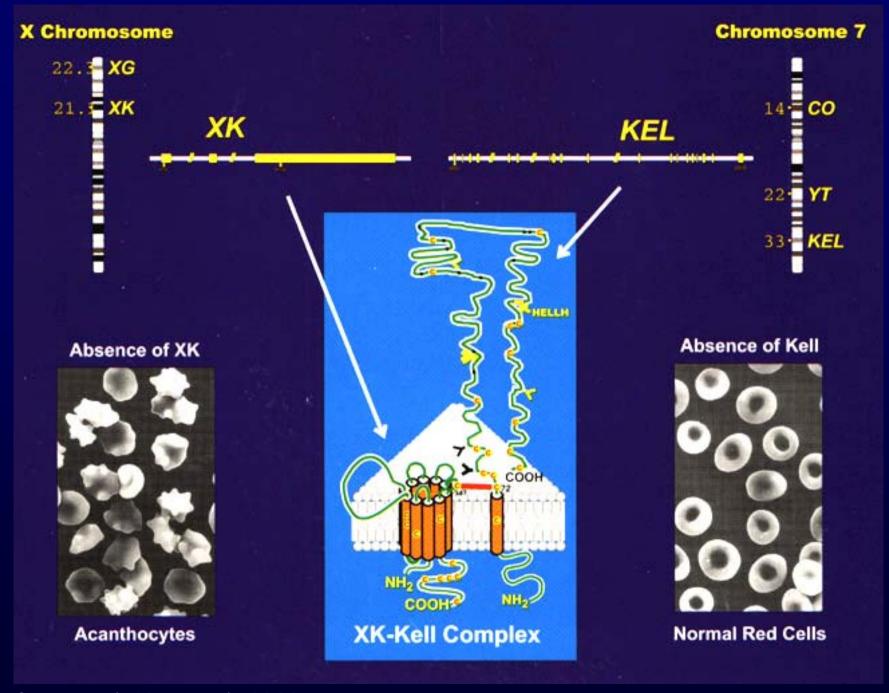
Kp(a-b+) KEL: -3,4 97.7 %

Js(a-b+) KEL: -6,7 100 %

Phénotype McLeod

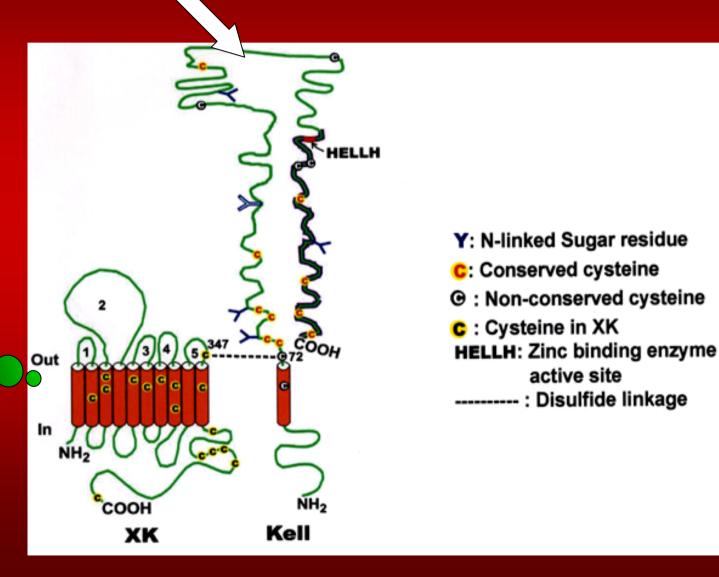
Découvert en 1961, 1er groupe sanguin associé à une maladie (hématologique, musculaire et neurologique)


L'absence de Kx engendre:


- une diminution des antigènes KEL
- la présence fréquente anti-Kx

L'expression des antigènes KEL dépend du gène KEL (sur chrom. n° 7) et du gène XK (sur chrom. X) ISBT 019, XK

Kell/XK Protein Complex


Les gènes *KEL* et *XK* sont liés par un pont disulfure

Les antigènes KEL sont des glycoprotéines avec un domaine Nterminal intracellulaire très court et un domaine C-terminal extracellulaire important

Kx est une protéine de transport et traverse la membrane 10 x

L'antigène Kx se trouve sur les hématies, mais aussi sur les granulocytes.

Un manque de Kx engendre non seulement:

- ⇒ diminution des antigènes KEL
- augmentation de créatine kinase (CK), très répandue dans les muscles et le cerveau
- ⇒ déformation des hématies acanthocytose

Phénotype McLeod

Chez certains patients 🖝 problèmes neuromusculaires

Chez d'autres maladie granulomateuse chronique (phagocytose normale, mais bactéricidie absente)

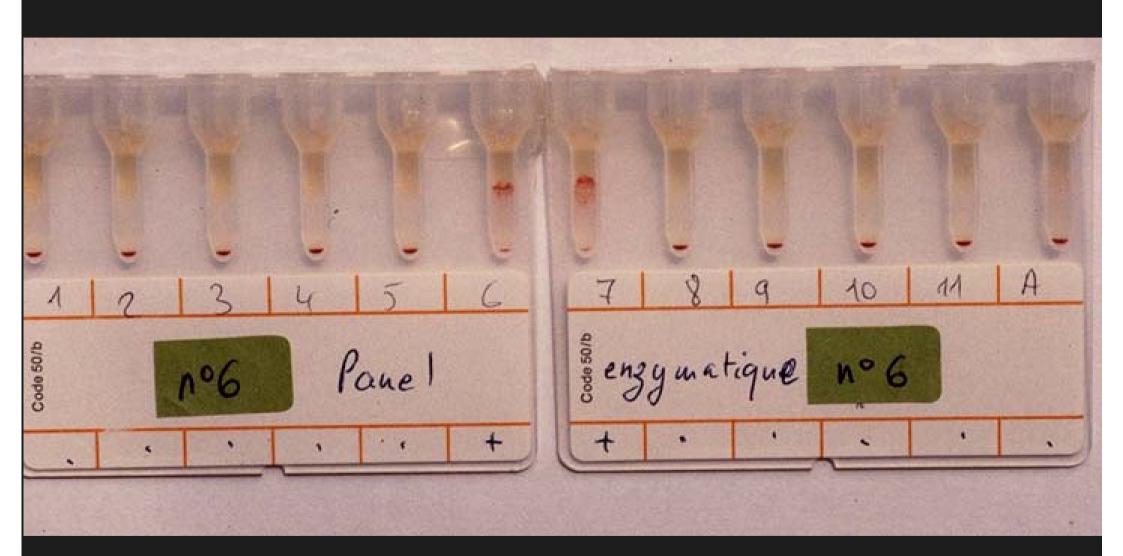
Cette variabilité de symptômes (essentiellement chez les hommes XY) indique que les génotypes McLeod résultent de diverses mutations (*Transfusion*, vol 47, February, 2007)

Mais, il existe des patients McLeod sans manifestation clinique (problème uniquement transfusionnel).

anticorps

Presque toujours d'origine immune

- IgG, détectés par Cbs ind. et enzymatique
- importants cliniquement, responsables de RT et AHNx
- anti-K, les plus fréquents, anti-k, rare (0.2% chez KK)


anticorps

- l'AHNx liée aux anticorps KEL résulte d'une inhibition de l'érythropoïèse plutôt que d'une hémolyse des hématies
- les antigènes KEL sont exprimés très tôt dans la vie fœtale sur les progéniteurs érythroïdes et la destruction aurait lieu à ce stade déjà, ainsi le titre de l'anti-KEL1 notamment maternel n'est pas un bon indicateur de l'anémie fœtale!

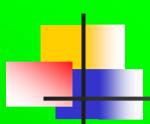
Il serait souhaitable d'effectuer le génotype fœtal *KEL*

1			Spender Donor Donneur		Rh-hr						Kell						Duffy		Kidd		Le
		Rh-hr			D	С	Ε	С	е	Cw	K	k	Кра	Кр	Jsª	Jsb	Fya	Fyb	Jkª	Jkb	Lea
	1	CWCD.ee	R ₁ ^W R ₁	58/8057	+	+	0	0	+	+	0	+	0	+	0	+	0	+	+	0	0
	2	CCD.ee	R_1R_1	578/7633	+	+	0	0	+	0	0	+	0	+	0	+	+	+	0	+	+
	3	ccD.EE	R ₂ R ₂	355/7475	+	0	+	+	0	0	0	+	0	+	+	+	+	0.	+	0	0
	4	Ccddee	r'r	533/8041	0	+	0	+	+	0	0	+	0	+	0	+	+	+	+	0	0
	5	ccddEe	r''r	424/8170	0	0	+	+	+	0	0	+	0	+	0	+	+	0	+	+	0
	6	ccddee	rr	144/7844	0	0	0	+	+	0	+	+	0	+	0	+	+	+	+	0	0
	7	ccddee	rr	663/8108	0	0	0	+	+	0	+	+	0	+	0	+	0	+	+	+	+
	8	ccD.ee	Ror	698/7833	+	0	0	+	+	0	0	+	0	+	0	+	+	0	+	+	0
	9	ccddee	rr	308/8258	0	0	0	+	+	0	0	+	0	+	0	+	Ó	+	0	+	+
	10	ccddEe	r''r	694/8493	0	0	+	+	+	0	0	+	0	+	0	+	+	+	0	+	0
2	11	ccddee	rr	2503420	0	0	0	+	+	0	0	+	+	+	0	+	0	+	+	+	0
								No.												100	

Contrôle négatif Contrôle postif

SYSTEME DUFFY

FY 008 ISBT


1950: Fy^a (FY1)

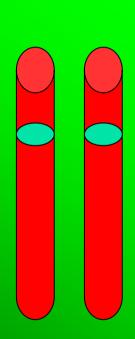
1951: Fy^b (FY2)

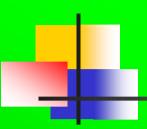
1955: Fy(a-b-) dans la race noire ⇒ résistant à la malaria

1995: biologie moléculaire des ag Fy^a et Fy^b

- antigènes bien développés à la naissance
- immunogènes après RH et KEL
- nombre de sites Fy^a 13 000 sur hématie homozygote
- phénotypes selon ethnie

SYSTEME DUFFY


DARC



Fy^a, Fy^b (*FYA et FYB*) gènes codominants Fy gène silencieux

Une mutation en position 46 du gène FY*B chez les noirs Fy(a-b-)

chromosome n° 1

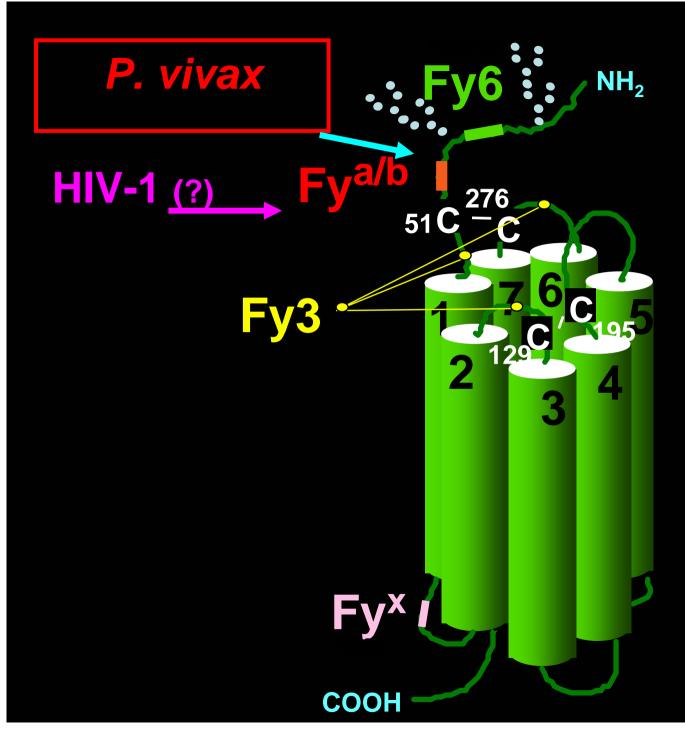
Fonctions des antigènes Duffy

DARC

Duffy ag récepteurs de chemokines

- récepteurs pour les Plasmodium vivax et knowlesi, mais également pour les chemokines: cytokines proinflammatoires qui activent les leucocytes (migration), notamment IL-8 et le platelet factor 4.
- présents sur hématies, mais également sur capillaires du rein, de la rate, de la peau, poumon et tube digestif pour contrôler la réponse inflammatoire

systèmes érythrocytaires et principaux récepteurs pour pathogènes


Parasites

Duffy (FY) DARC P. vivax

Diego (DI) Bande 3 P. falciparum

MNSs (MNS) GPA/GPB P. falciparum

Gerbich (GE) GPC P. falciparum

Noirs ► 65 % Fy(a-b-)
Résistants à la malaria
(Plasmodium vivax)

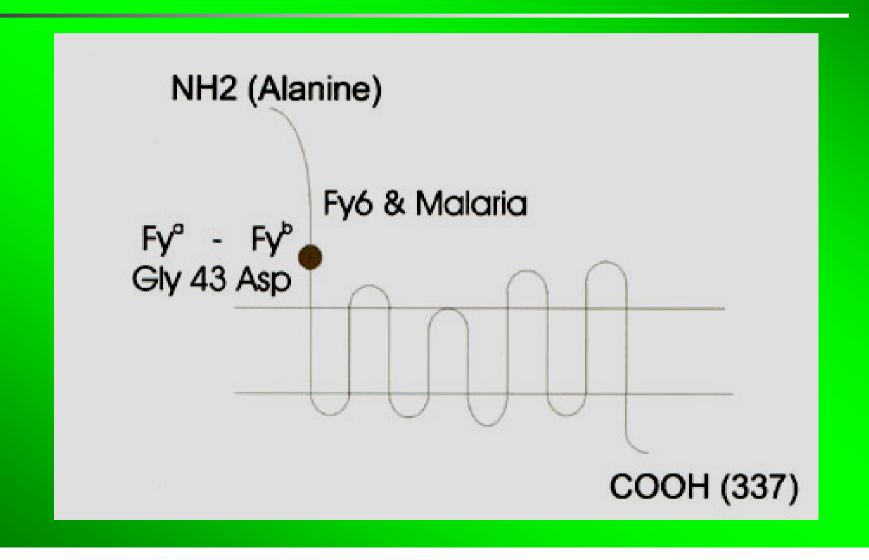
JP Cartron - ASMT 2007

DARC

Duffy Antigen/Receptor for Chemokines

anti-Fy⁶ bloque la liaison IL8

JP Cartron - ASMT 2007



phénotype	génotype	blancs	Noirs américains	chinois
Fy(a+b-)	Fy ^a Fy ^a Fy ^a Fy	17 %	9 %	90.8 %
Fy(a+b+)	Fy ^a Fy ^b	49 %	1 %	8.9 %
Fy(a-b+)	Fy ^b Fy ^b Fy ^b Fy	34 %	22 %	0.3 %
Fy(a-b-)	FyFy	Très rare	68 %	0

- □ cliniquement importants, IgG fixent parfois le C'
- détectés en Coombs ind + LiSS et non par enzyme
- réaction transfusionnelle (RT) +/- sévère, parfois retardée et AHNx modérée ou sévère
- anti-Fy^a fréquent chez les blancs, rarement chez les noirs Fy(a-b-)
- ☐ Anti-Fy^b souvent associé à d'autres alloac
- autoanticorps qui mimétisent anti-Fy^a /anti-Fy^b, en fait, alloac « with sloppy specificity » dans la phase initiale de la réponse immune

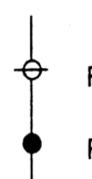
glycoprotéine 337 a.a. avec parties extra et intram em branaires

Gene complex:

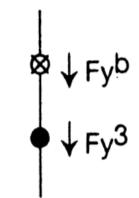
Fya

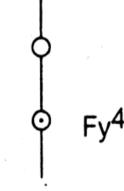
Fyb

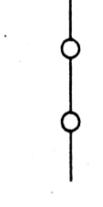
FyX*


Fy⁴

Fy


Antigens encoded at:


Locus 1


Locus 2

⊗ F

Frequency:

Common

Common

Rare

Common

Rare

Blacks

Null

Initial testing:

Fy(a+b-)

Fy(a+b+) FyaFyb

Presumed genotype:

FyaFya

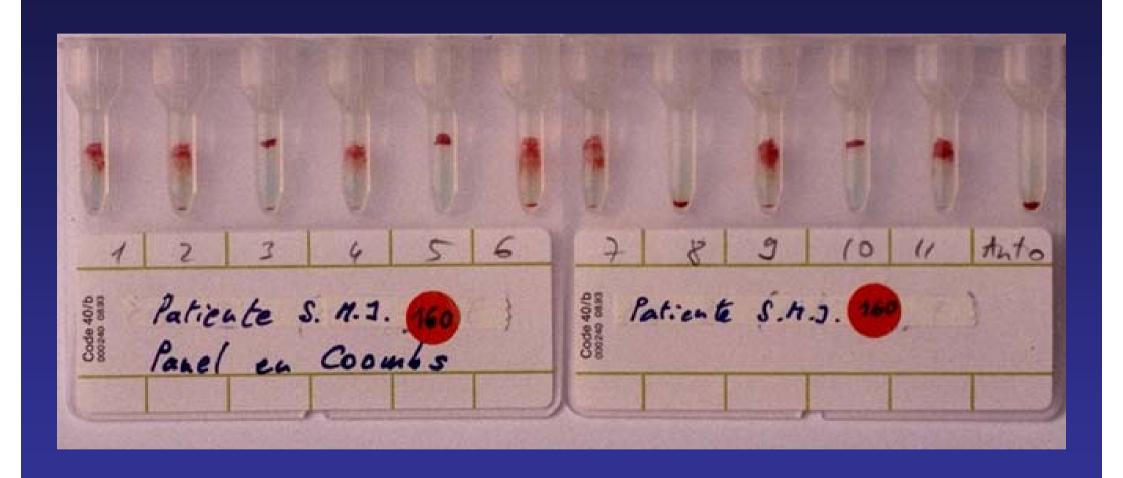
*Actual genotype:

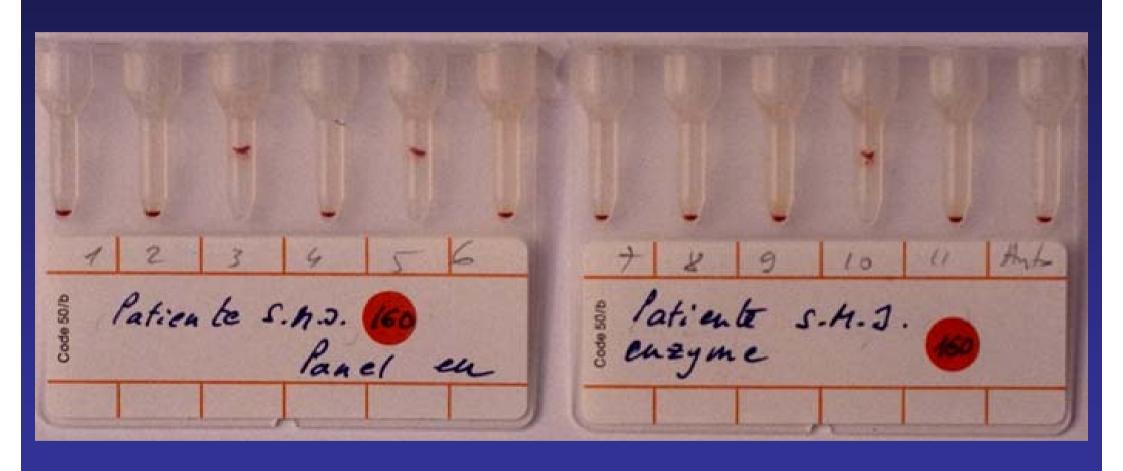
FyaFyX

Initial testing: Fy(a-b+)

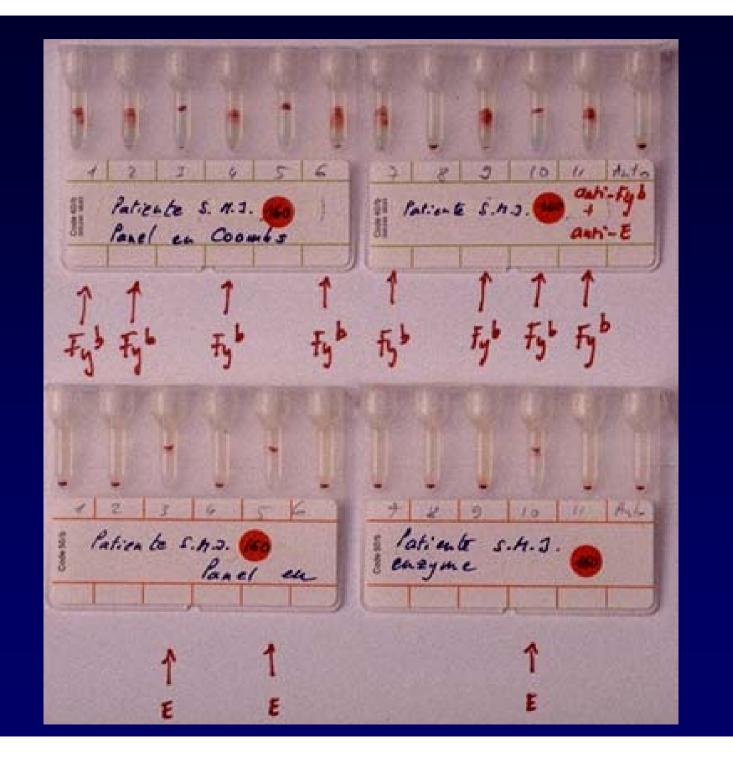
FybFyb FybFyx Presumed genotype:

*Actual genotype:


TABLE 8-12 REACTIVITIES OF ANTI-Fy3, ANTI-Fy4, ANTI-Fy5, AND ANTI-Fy6117


Red Cell Phenotype	Anti-Fy3	Anti-Fy4	Anti-Fy5	Anti-Fy6
White Fy(a+b-)	+	0	+	+
White Fy(a-b-)	+	0	+	+
White Fy(a-b+)	+	0	+	+
Black Fy(a+b-)	· +	Most +	+	+
Black Fy (a+b+)	+	0	+	+
Black Fy(a-b+)	+	Most +	+	+
Black Fy(a-b-)	0	Most +	0	0
White Fy(a-b-)*	0	+w	+	0
White Fy(a+b+), Rh _{null}	+	0	0	+ .
White $Fy(a-b+w)$, Fy^xFy^x	+w	NT	+w	+w

^{*}Producer of anti-Fy3.


NT = not tested; w = weak reactivity.


	Spen	100 M			Rh	-hr			*		Ke	ell	100		Du	iffy	Kid	dd	Le	vis	Р
Rh-hr	Done	0,6-4	D	С	O	c	е	C*	K	k	Кра	Kpb	Js³	Jsº	Fya	Fyo	Jka	Jkº	Le	Leb	P ₁
C ^W CD.ee	R ₁ WR ₁	58/8057	+	+	0	0	+	+	0	+	0	+	0	+	0	+	+	0	0	+	0
CCD.ee	R_1R_1	578/7633	+	+	0	0	+	0	0	+	0	+	0	+	+	+	0	+	+	0	+
ccD.EE	R ₂ R ₂	355/7475	+	0	(+	0	0	0	+	0	+	+	+	+	0	+	0	0	0	+
Ccddee	r'r	533/8041	Ò	+	0	+	+	0	0	+	0	+	0	+	+	+	+	0	0	+	¥
ccddEe	r''r	424/8170	0	0	(+	+	+	0	0	+	0	+	0	+	+	0	+	+	0	+	0
ccddee	rr	144/7844	0	0	0	+	+	0	+	+	0	+	0	+	+	+	+	0	0	+	+
ccddee	rr	663/8108	0	0	0	+	+	0	+	+	0	+	0	+	0	+	+	+	+	0	+
ccD.ee	Ror	698/7833	+	0	0	+	+	0	0	+	0	+	0	+	+	0	+	+	0	+	+
ccddee	rr	308/8258	0	0	0	+	+	0	0	+	0	+	0	+	0	+	0	+	+	0	0
ccddEe	r''r	694/8493	0	0	(+	+	0	0	+	0	+	0	+	+	+	0	+	0	+	W +
ccddee	rr	2503420	0	0	0	+	+	0	0	+	+	+	0	+	0	+	+	+	0	+	+
									-	183	18		12			113		1			

uniquement anti-E

SYSTEME KIDD

JK 009 ISBT

1951: Jka (JK1)

1953: Jkb (JK2)

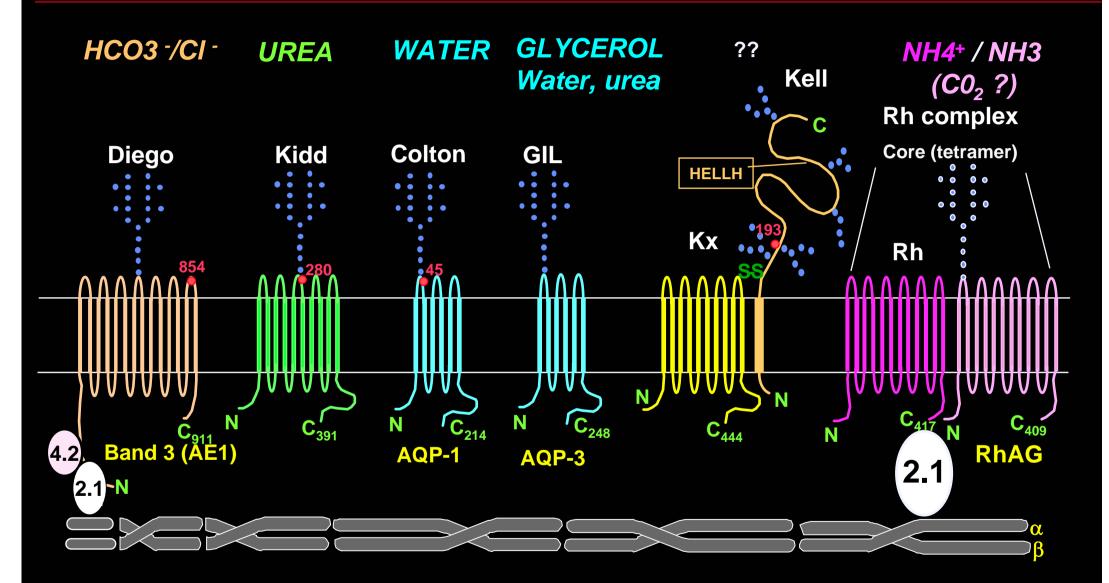
1959: phénotype Jk(a-b-) (polynésiens, finnois, suisse)

Jka, Jkb gènes allèles codominants

Jk gène silencieux

ag localisés sur transporteur d'urée ag localisés sur transporteur d'urée

chromosome n° 18



SYSTEME KIDD

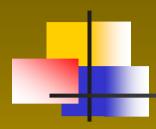
- les antigènes Jk^a et Jk^b sont bien développés à la naissance (d'où AHNx)
- les récepteurs Jk^a et Jk^b sont responsables du transport de l'urée
 important pour la fonction rénale
- se trouvent uniquement sur les hématies
- résistants aux enzymes, au ZZAP (élixir: enzyme et agents thiol) et AET
- les hématies Jk(a-b-) sont résistantes à l'urée
- nombre de sites Jk^a

 □ 14 000 / érythrocyte homozygote
- Tréquence selon l'origine raciale
- antigènes cachés d'où difficulté à fixer parfois l'anticorps

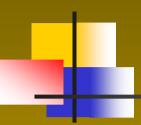
Transporters and Channels with blood group specificity

Major polymorphism

Phénotypes


+	0	Jk(a+b-)	28 %	57 %
+	+	Jk(a+b+)	49 %	34 %
0	+	Jk(a-b+)	23 %	9 %
0	0	Jk(a-b-)	rarissime	îles de l'océan Pacifique
			blancsnoirs	

anticorps


Anticorps labiles, perfides, dangereux

- cliniquement important, IgG (IgG3)
- détruits par conservation, car C'-dépendants
- difficiles à détecter, car titre faible et effet de double dose antigénique
- Coombs indirect et enzyme sur hématies homozygotes
- responsable de RT (retardée) et d'AHNx

anticorps

- Anti-Jk^a c/o polytransfusés, parfois parturientes
- Anti-Jkb rares, associés souvent à d'autres anticorps
- Anti-Jk^{ab} exceptionnel, appelé également anti-Jk³ c/o Jk(a-b-)

Auto anticorps

Auto ac anti-Jka et anti-Jkb

- surtout dans les AHAI
- associé à des médicaments (a-méthyldopa)
- parfois avec médicaments contenant une molécule d'urée
- paraben (utilisé dans le Liss, préservatif alimentaire des cosmétiques et des médicaments)
- peuvent surgir après stimulation virale ou bactérienne

Antigen-Tabelle Antikorper-Identifizierung Antibody identification Identification d'anticorps

Antigen-Table

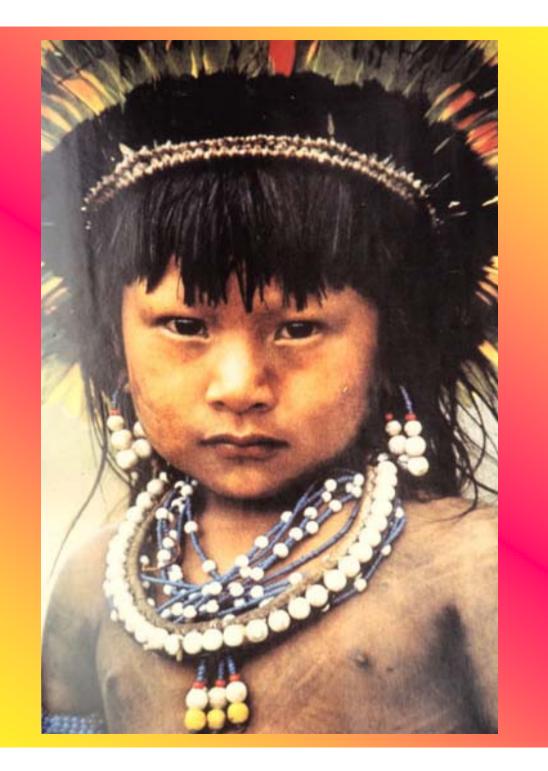
Table d'antigenes

Ch.-B: no.lot:

Verw. bis: lot no.: 0621.88. AO Exp. date: 0622.88.A0 Exp. le:

14.

1		Spen				Rh	er.					Ke	1			Dui	۲	Kid	d.	Lew	ń,	P		MN	5		Listh		X		Spez. Antigene special types	
Rh	Har	Dono		D	С	Ε	c	e	C-	ĸ	h	Кр	Ko	da-	Jár	Fyr	fyr	Je	Jie	Let	Le ^a	P _i	М	N	s		to t	u l	Xg*	9 8	antigènes part	
1 C"(CD.ee	R, WR,	58/8057	+	+	0	0	+	Ŧ	0	+	0	+	0	4	0	+	+	0	0	+	0	+	+	+	+	0	Į.	+	M		1
2 CCI	D.ee	R,R,	578/7633	+	+	0	0	+	0	0	+	0	+	0	+	+	+	0	+	+	0	+	0	+	0	+	+	+	+	M	To be seen to be	2
3 ccI	D.EE	R ₂ R ₂	355/7475	+	0	H	7	0	0	0	+	0	+	+	+	+	0	+	0	0	0	Ŧ	+	0	+	+	+	+	+	M		3
4 Ccc	ddee	r'r	533/8041	0	+	0	+	+	0	0	+	0	+	0	+	+	+	+	0	0	+	¥	+	0	+	+	0	+	+	M	Dob+	4
5 ccc	ddEe	r''r	424/8170	0	0	H	ŧ	+	0	0	+	0	+	0	+	+	0	+	+	0	+	0	+	0	+	0	0	+	+	M		5
ccd	ddee	rr	144/7844	0	0	0	+	+	0	+	+	0	+	0	+	÷	+	+	0	0	+	+	0	+	0	+	0	+	*	M		6
ccd	ddee	rr	663/8108	0	0	0	+	+	0	+	+	0	+	0	+	0	+	+	+	+	0	+	+	4	0	+	0	+	+	F	Vel-	.7
ccI	D.ee	Ror	698/7833	+	0	0	+	+	0	0	+	0	+	0	+	+	0	ŧ	+	0	+	+	+	0	0	+	0	+	±	M		8
ccd	idee	rr	308/8258	0	0	0	+	+	0	0	+	0	+	0	+	0	+	0	+	+	0	0	+	0	+	0	+	+	+	F		9
ced	id Ee	r''r	694/8493	0	0	+	+	+	0	0	+	0	+	0	+	4	+	0	+	0	+	¥	0	4	0	+	0	+	+	M		10
ccd	idee	rr	2503420	0	0	0	+	+	0	0	+	+	+	0	+	0	+	+	+	0	+	+	+	0	+	0	0	+	+	F	7 11 2	11
			0.00															M														
1	14							B		74			9	107						E												
		100	SINE III		B		B	F			1			Mi			10															
			THE REAL PROPERTY.			W			F			18	W	1981					12	m	K								13			



	Spe Dor	mde			R	Hir					1100	éil			D	utfy	×	dd	Lo	V15	P		M	NS		Lu	dh.	X	9	Spez. Antigene	
		neur	D.	C	E	c		C+	K	W	Kp.	Koʻ	Jar	J\$P	Fy	Fy^	ж	Jus	Le ⁱ	Let	Pi	М	N	s	5	Lui	Lun	Xg.	9	special types antigénes part.	
ee	R1 WR1	58/8057	+	+	0	0	+	+	0	+	0	+	0	+	0	+	Ŧ	0	0	+	0,	+	4	+	+	0	+	+	M	新始级 第	1
e	R ₁ R ₁	578/7633	+	+	0	0	+	0	0	+	0	+	0	+	+	+	0	4	+	0	+	0	+	0	+	平	4	+	M		2
E	R ₂ R ₂	355/7475	+	0	+	+	0	0	0	+	0	+	+	+	+	0	+	0	0	0	+	1	0	+	+	+	+	+	М		3
е	r'r	533/8041	0	+	0	+	+	0	0	+	0	+	0	+	+	+	+	0	0	+	¥	+	0	+	+	0	4	4	М	Dob+	4
e	r''r	424/8170	0	0	+	+	+	0	0	+	0	+	0	+	+	0	+	+	0	4	0	+	0	+	0	0	+	+	М		5
е	rr	144/7844	0	0	0	+	+	0	+	+	0	+	0	+	+	+	+	0	0	+	+	0	+	0	4	0	4	+	М		6
е .	rr	663/8108	0	0	0	+	+	0	+	+	0	+	0	+	0	+	+	+	+	0	+	4	+	0	¥	0	III.	+	F	Vel-	7
e	Ror	698/7833	+	0	0	+	+	0	0	+	0	+	0	+	+	0	+	+	0	+	+	7	0	0	+	0	4	+	М		8
е	rr	308/8258	0	0	0	+	+	0	0	+	0	+	0	+	0	+	0	+	+	0	0	+	0	+	0	+	4	4	F	NO STATE	9
e	r''r	694/8493	0	0	+	+	+	0	0	+	0	+	0	+	+	+	0	+	0	B-00	¥	0	7	0		0		+	M		10
9	rr.	2503420	0	0	0	+	+	0	0	+	+	+	0	+	0	+	+	+	0	+	+	+	0	+	0	0	+	+	F		11

Panel en Coombs

1955: Dia

• fréquent dans la population mongole et chez les Amérindiens,

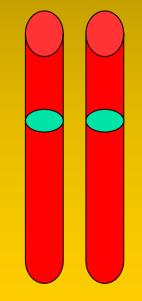
absent dans la race blanche

1967: Dib,

haute incidence dans la race blanche

SYSTEME DIEGO

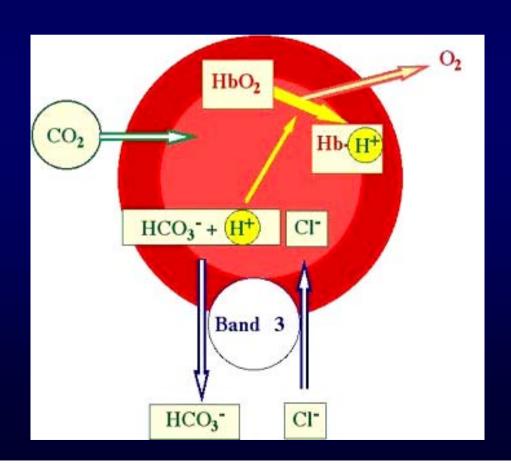
ISBT: DI 010

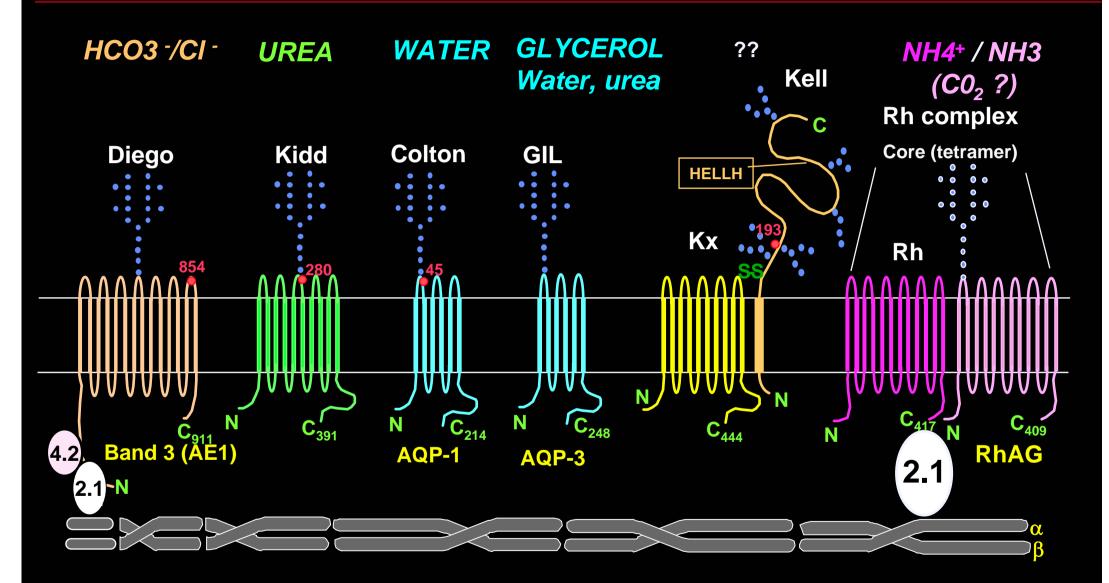

Système à valeur anthropologique dont l'un des antigènes Di^a est le témoin de l'origine mongole des Amérindiens.

21 antigènes (2008)

Dia, Dib gènes codominants

transport d'anions transport d'anions





Transport / Canal

■ Diego (DI) Bande 3 anions

Transporters and Channels with blood group specificity

Major polymorphism

Phénotypes Diego

100 %

rare

0 %

Di(a-b+)

Di(a+b+) 36 % chez Amérindiens & 5-15 % race jaune

Di(a+b-) sauf chez les Amérindiens

anticorps du système Diego

- Toujours immuns, IgG.
- Détectés par Coombs Indirect surtout, et par test enzymatique parfois.
- Responsables de l'anémie hémolytique foeto-maternelle et de réaction transfusionnelle modérée.

fin